A Class-outlier Approach for Environnemental Monitoring Using Uav Hyperspectral Images
نویسندگان
چکیده
In several remote sensing applications, detecting exceptional/irregular regions (i.e, pixels) with respect to the whole dataset homogeneity is regarded as a very interested issue. Currently, this is limited to the pre-processing step aiming to eliminate the cloud or noisy pixels. In this paper, we propose to extend the coverage area and to tackle this issue by regarding the irregular/exceptional pixels as outliers. The main purpose is the adaptation of the class outlier mining concept in order to find abnormal and irregular pixels in hyperspectral images. This should be done taking into account the class labels and the relative uncertainty of collected data. To reach this goal, the Class Outliers: DistanceBased (CODB) algorithm is enhanced to take into account the multivariate high-dimensional data and the concomitant partially available knowledge of our data. This is mainly done by using belief theory and a learnable task-specific similarity measure. To validate our approach, we apply it for vegetation inspection and normality monitoring. For experimental purposes, the Airborne Prism Experiment (APEX) data, set acquired during an APEX flight campaign in June 2011, was used. Moreover, a collection of simulated hyperspectral images and spectral indices, providing a quantitative indicator of vegetation health, were generated for this purpose. The encouraging obtained results can be used to monitor areas where vegetation may be stressed, as a proxy to detect potential drought.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملA New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment
The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کامل